Cramér-Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters

نویسندگان

  • Mahdi Shaghaghi
  • Sergiy A. Vorobyov
چکیده

In this letter, we consider signals with a low-rank covariance matrix which reside in a low-dimensional subspace and can be written in terms of a finite (small) number of parameters. Although such signals do not necessarily have a sparse representation in a finite basis, they possess a sparse structure which makes it possible to recover the signal from compressed measurements. We study the statistical performance bound for parameter estimation in the low-rank signal model from compressed measurements. Specifically, we derive the Cramér-Rao bound (CRB) for a generic low-rank model and we show that the number of compressed samples needs to be larger than the number of sources for the existence of an unbiased estimator with finite estimation variance. We further consider the applications to direction-of-arrival (DOA) and spectral estimation which fit into the low-rank signal model. We also investigate the effect of compression on the CRB by considering numerical examples of the DOA estimation scenario, and show how the CRB increases by increasing the compression or equivalently reducing the number of compressed samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Cramér-Rao Bound for Noisy Non-Blind and Blind Compressed Sensing

In this paper, we address the theoretical limitations in reconstructing sparse signals (in a known complete basis) using compressed sensing framework. We also divide the CS to non-blind and blind cases. Then, we compute the Bayesian Cramer-Rao bound for estimating the sparse coefficients while the measurement matrix elements are independent zero mean random variables. Simulation results show a ...

متن کامل

New Cramér-Rao bound expressions for coprime and other sparse arrays

The Cramér-Rao bound (CRB) offers a lower bound on the variances of unbiased estimates of parameters, e.g., directions of arrival (DOA) in array processing. While there exist landmark papers on the study of the CRB in the context of array processing, the closed-form expressions available in the literature are not easy to use in the context of sparse arrays (such as minimum redundancy arrays (MR...

متن کامل

Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors

The Cramér-Rao bound (CRB) offers a lower bound on the variances of unbiased estimates of parameters, e.g., directions of arrival (DOA) in array processing. While there exist landmark papers on the study of the CRB in the context of array processing, the closed-form expressions available in the literature are not easy to use in the context of sparse arrays (such as minimum redundancy arrays (MR...

متن کامل

Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays

Unlike low-rank matrix decomposition, which is generically nonunique for rank greater than one, low-rank threeand higher dimensional array decomposition is unique, provided that the array rank is lower than a certain bound, and the correct number of components (equal to array rank) is sought in the decomposition. Parallel factor (PARAFAC) analysis is a common name for low-rank decomposition of ...

متن کامل

Cramér-Rao Bound for finite streams of pulses

Sampling a finite stream of filtered pulses violates the bandlimited assumption of the Nyquist-Shannon sampling theory. However, recent low rate sampling schemes have shown that these sparse signals can be sampled with perfect reconstruction at their rate of innovation. To reach this goal in the presence of noise, an estimation procedure is needed to estimate the time-delay and the amplitudes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Signal Process. Lett.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015